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I.  INTRODUCTION 

The relation between vapor pressure and temperature can be approximated 

for certain chemical compounds by the so-called Antoine equation, viz., 

Ig(p/PR) - A + B/l(T - 273.15) + C] = 0  , (1.1) 

where p (Fa) is the vapor pressure, pR (Pa) is a reference pressure (usually 

PR = 1 torr - 7.50064*10~ Pa), T (K) is temperature, and A, B and C are model 
parameters. The latter are determined for a particular compound by data 

fitting to observed p,T-correspondences. If this is done by a simple least 

squares method, then it is customary and also advantageous numerically to 

consider as observations the quantities lg(p/pD) instead of the actually 
1  o o       K 

observed pressures. ' Penski and latour point out, however, that such a 

treatment of pressure data implies the assumption that inaccuracies of the 

pressure observations are proportional to the observed pressures. Also 

implied by the published treatments of vapor pressure data is that 

inaccuracies of temperature observations can be neglected. The adequacy of 

these two assumptions has not been discussed in the literature, but, because 

they do influence the model fitting results, it is important to have some 

means by which these or other assumptions about data accuracy can be tested. 

A test can be provided, for instance, by analyzing the different sets of 

residuals that are obtained with different assumptions about measurement 

errors. Based on such analyses one then may choose an optimal error model 

according to some criterion or even develop an algorithm that produces the 

optimal model automatically. Similar problems have been discussed by Cohen » 

and Nielsen, Both authors suggest iterative algorithms for the determination 

of optimal error models.   In this report,  the approach of Nielsen is 

Hevhevt R.  Kemme and Saul I.  Kreps,   "Vapor Pressure of Primary n-Alkyl 
Chlorides and Aledhols, " Journal  of Chemical  and    Engineering Data,   Vol.   14, 
pp.   98-102,   1969. 

<? 

"Elwin C. Penski and Leo J.  Latour,   "Conversational Computation Method for 
Fitting the Antoine Equation to Vapor Pressure-Temperature data," Edgewood 
Arsenal  Technical Report EATR 4491,   February 1971   (AD 881829L). 

2 
E.  Richard Cohen,   " 'Extended'   Least Squares, " Rockwell International  Science 
Center Report    SCTR-76-1,   January 1976. 

E.  Richard Cohen,   "An Extended Least  Squares Algorithm for  Treating 
Inconsistent Data," Rockwell International Science Center Report    SCTR-78-11, 
December 1978. 

Kurt Nielsen,   "A Method for Optimizing Relative Weights in Least Squares 
Analysis, " Acta Cristalloqrayhica,   AZZ,   pp.   1009-1010,   1977. 



generalized so that It can be applied to a wider class of data fitting 

problems, including vapor pressure measurements. Tests of the method on 

typical vapor pressure data indicate, however, that an automatic determination 

of error parameters as suggested by Nielsen is not feasible for this type of 

data. More appropriate is an interactive computation, whereby the user 

determines the optimal parameters based on the results of the analyses of 

residuals. 

In Section II we describe the generalized formulation of Nielsen's 

approach and the suggested variation of it. Residual analysis is treated in 

Section III, and Sections IV and V contain test results with simulated and real 

data, respectively. 

II.  SIMULTANEOUS FITTING OF PRESSURE MODELS AND ERROR MODELS 

An iterative process for the simultaneous determination of event model 

parameters and error model parameters has been suggested by Nielsen. His 

problem formulation is, however, restricted to weighted least squares 

adjustments and, consequently, to single component observations. In this 

section, the problem is reformulated so that general least squares model 
fitting can be treated, including cases with multiple component observations 

and models that are formulated by sets of simultaneous equations. The 

generalization is needed for the treatment of vapor pressure data because they 

consist of observation vectors with two components, pressure and temperature, 

each of which may be subject to errors and adjustment. 

Let the general least squares model fitting task be formulated as the 

following constrained minimization problem: 
S  T -1 

minimize W(c,t) =  ^  c R.  c. 

c.t 1-1 (2.1) 

su bject to Fi(X1+ci; t) =0, 1-1,. 

where X. are the observations (observed vectors), c1 are corresponding 

residuals, R. are estimated variance-covariance matrices of the components of 

X., t is a model parameter vector, and Fi(Xi;t) = 0 are model equations. 

In general, the model equations are sets of simultaneous equations; i.e., 

the F. are vector functions. In the case of vapor pressure measurements, the 

model equations are scalar equations representing some form of the Antoine Eq. 

(1.1). We shall give the specific formulations of the model fitting and error 

fitting for vapor pressure measurements at the end of this section. 

The solution of the problem (2.1) consists of the set c of the residuals 

c and a corresponding model parameter vector t. The given input consists of 

the observations X. and the estimated variance-covariance matrices R^ (in 

addition to the given functions F.). Our goal is to find a set of Ri that is 

optimal in some sense.  To that end we assume that the R^^ are expressed as 



functions of the X., c., the model parameter vector t, and a free error 
parameter vector 6 . This reduces the problem of finding s optimal matrices 
R. to the determination of a single optimal error parameter vector 6 . 

Next, we introduce a function S as a measure for the optimallty of the 
set of the variance-covariance matrices R. by the following definition: 

S = 1 + ~  I  q. in qi  , (2.2) 
In s 

where 

q. = cTR.1c, /  )'  CTR/C,  . (2.3 
r   i 

.R.V /  V c.R.c.     . 

Our goal is to find such a set of R.(e) that produces a minimum value for 
S.  The corresponding error parameter 0 we call the optimal parameter. 

The definition of S by Eq. (2.2) as an objective function was suggested 
by Nielsen" and based on the following properties of S: 

(a) S is a maximum and equals one if all but one of the q. are zero. 

(b) S is a minimum and equals zero if all q. = 1/s. 

(c) Any averaging of the q. reduces S; that is, if 

0 < a, . < 1  , 
ij 

s 

I a-- = I 
j-1      1J     1=1 

a.. = 1   for i,i = 1,.. ,s 

and 

* s 
q.. =  )    a. . q. 

J-1 

then 

S(q) <   S(q) 



Hence, a minimization of S tends to equalize the q^. The numerator in the 
definition (2.3) of q. can be considered as the square of a norm of the 
residual c . Therefore, an equalization of the q. means an equalization of 
the norms of the residuals. Cohen points out that one can also use instead 
of this S other objective functions with similar properties. In limited 
numerical experiments with such functions and vapor pressure data we did not 
find objective functions that would offer numerical or other advantages over 
S. The remaining considerations in this report are, therefore, limited to the 
objective function S as defined by Eq. (2.2). 

Nielsen suggests an automatic determination of the error parameter 6 
concurrently with a solution of the least squares problem by the following 
iteration procedure: 

Step 1.  Choose an initial error parameter vector 9. 

Step 2.  Solve the least squares problem (2.1). 

Step 3.  Find a new error parameter vector 0 by solving the minimization 
problem 

minimize  S(c, R(e)) 
e 

Step 4.  Replace 6 by 0 and repeat the procedure starting with Step 2. 

An essential part of the algorithm is Step 3 at which S is minimized by 
varying the R.(6) while keeping the residuals c. fixed. The minimization can 
be achieved quite effectively by a simplex method because usually the number 
of components of 0 is relatively small (less than ten). Nielsen did not 
investigate the convergence properties of the algorithm but reports 
convergence in two steps when the algorithm was applied to a data set with 882 
observations. At the end of the iterations Nielsen compared the distribution 
of the (weighted) residuals with normal distribution and found good agreement. 

The minimization of S at Step 3 of the algorithm is also a weak point of 
the method because it prevents the algorithm from producing the optimal 6 
exactly, although the algorithm may produce a good approximation. In order to 
show this, let us assume that the minimum of S is determined by setting its 
derivative with respect to 8 equal to zero (instead of using a simplex 
method). The residuals ^ which appear In the definition (2.2) and (2.3) of S 
are functions of 9, because they are determined at Step 2 from a least squares 
fit in which the R (9) are used as input. Therefore, the formal derivative of 
S with respect to 6 can be symbolically expressed by 

^l = l§.l£.dR + lSdR 
d9   3c 3R d9   8R d9   ' C * ^ 

10 



A minimum of S and the corresponding 9 = 0 can be obtained by solving the 

equation dS/dO = 0.  However, at Step 3 of the algorithm one seeks the minimum 
of S with respect to 9 for fixed c. This is equivalent to solving the 
equation 

3S dR   ^ /„ ^x 
^R d-9-= 0  • ^'^ 

The solution of Rq. (2.5) may be a good approximation to the solution of the 
complete equation dS/d9 = 0, if the first term on the right-hand side of 

Eq. (2.4) is small. However, by setting only the second term equal to zero 

one never obtains the exact solution because the first term always dominates 

when the second terra approaches zero. (We are not interested in the limiting 

solution dR/d9 =0.) On the other hand, If the first term is large, then its 

neglect can prevent the algorithm from converging even to an approximate value 

of the optimal 9. Experiments with vapor pressure data, indeed, have shown that 

failure to converge or a convergence to obviously wrong values of 9 do 

occur. Therefore, we recommend determination of the minimum of S by direct 

search, e.g., by plotting S as a function of 9 instead of using the outlined 

Nielsen's algorithm. We shall illustrate the behavior of S(9) with some 
examples in Sections IV and V. 

Next, we specialize the general formulation of the problem to vapor 
pressure data.  The data vectors are 

P 

1 
Xi = ( T

1]  , i = l,..,s    , (2.6) 

the residual vectors are 

c . 
Pi c, = [ / )   , i = l,...,s (2.7) 
Ti 

and   the   constraint   equations   are,   e.g., 

lg   [(pi+ Cpi)/PR]   ~ A +  B/(Ti+ CTi"  273-15 +  C)   =  0     , i  =   l,..,s     , 

(2.8a) 

or 

(Pi+ c
Pi

)/pR-  10 ' "  B/(Ti + ^ ' 273*15 + C) = 0    '      * =  i'-s     • 

(2.8b) 

11 



We consider the following models for the standard errors of pressure and 

temperature, respectively. 

!pi/pR eo11 +6l(pi+CPi
)/PR] ' 

(2.9) 

Ti 
e  0„ 
o  2 

where e  is the standard error of weight one. 

least squares objective function W by 

It is defined in terms of the 

e  =  / W/(s 
0 

IT (2.10) 

because the Antoine model equation has three free parameters. The error 

parameter 9 has according to this definition two components. The models of 

the variance-covariance matrices Rj we define by 

PR
2  ^ + VPi + % i^/ 

0 

The least squares objective function is, therefore, 

(2.11) 

c    |/PT> pi     R 

i-i [{ 1+<ir  . %i' - 
)2M^)2]     • (2.12) 

The quantities q^^ that enter the definition (2.2) of S are 

q   -rr JH^l f   + 
qi     U  1+ei(Pi+ c

Pi
)/pR 

Ti)2 ]/w (2.13) 

The error models (2.9) were chosen by the following considerations. The 

pressure standard error e . is constant if 0 is small and it approaches a 

constant relative error if 9, is large. Hence, by permitting 9 to vary we 

should be able to determine whether a constant or a relative pressure standard 
error is more appropriate. The temperature standard error is likely to be 

constant and, therefore, the corresponding model for e™, does not Include a 

term proportional to the temperature. By setting the parameter 9 = 0 we 

obtain with this model also the special case in which the temperature errors 
are neglected. 

12 



III.  REDUCED RESIDUALS 

One measure for the goodness of the solution of the problem described in 

Section II is the final value of the objective function S. Nielsen suggests as 

another measure an investigation of the distribution of weighted residuals and 

a comparison of the distribution with a normal distribution. The suggestion 

is easy to implement if the observations and residuals are scalars. In the 
general formulation (2.1) of the adjustment problem, however, the observables 

are not necessarily scalars and, therefore, one has to deal with 

multidimensional distributions of measurement errors and residuals. On the 

other hand, the effective dimensionality of the residuals is not necessarily 

the same as that of the measurement errors because it is reduced by the 

constraint equations F^Xj^ + c^t) = 0 that must be satisfied by the 

residuals. For instance, if one is fitting a straight line to observations of 

x and y, and the R^^ are unit matrices, then the measurement error distribution 

is two-dimensional, but all residuals have the same direction (orthogonal to 

the line); that is, they span only a one-dimensional residual space. For this 

reason, an investigation of residual distributions should be sensibly done in 

spaces that have appropriately reduced dimensions. Quantities with the proper 

dimensionality are the reduced residuals a. which we define by 

T  -1 11 
a. - (F.R.FM  '  F c   , (3.1) i    xi i xi      xi i  ' v-j.iy 

where 

8Fi(Xi + Ci;t:) 
Fxi =  3^  (3-2) 

are the Jacobian matrices of the model functions. The dimension of a. equals 

the dimension of the constraint function F^ If the constraint is scalar, as 

in a fitting of a (n-l)-dimensional hypersurface in a n-dimensional space, 

then the reduced residuals a^ are scalars. The components of the reduced 

residuals are dimenslonless, in contrast to the components of the least 

squares residuals ci which in general have different physical dimensions 
(pressure and temperature in case of vapor pressure measurements). 

Further relations between the a. and ci can be derived from the equation 

Ci " ^xi^xi^xi)  FXi
Ci (3-3) 

13 



that is exactly satisfied by least squares residuals.   Eqs. (3,1) and (3.3) 
imply 

T        T  -1/? ci = WViV     ai ^-^ 

and 

T„-l     T 
c.R. c.=  a.a.  . (3.5) 

A reasonable measure of the size of the residual c. is the elliptic norm 

I|CilI  - lCiRi     ClJ        ' C3'6) 

Eq. (3.5) shows that the Euclidean norm of the reduced residual a. equals the 

elliptic norm (3.6) of the least squares residual c^. 

In the special case with scalar constraints Fj = 0, the definition (3.1) 
of the reduced residuals a. simplifies to 

T -1   1/2 
a. = (c.R. c^   sgn(Fxic1)  . (3.7) 

In an elementary least squares curve fitting problem where the observables are 

one-dimensional and the constraints have the special form Xi + ci - fi(t) = 0, 
the definition (3.7) further simplifies to 

ai = Ci/ei = Ci ^i  ' (3'8) 

where e^ is the estimated standard error of the observation X. and w. is the 

weight of the observation to be used for a weighted least squares adjustment. 

Hence,in such problems, the reduced residuals (3.1) are identical to the usual 
weighted residuals. 

7!—'■ —  
Aivavs CelmivS,   "Least Squares Adjustment uith Finite Residuals for Non- 
linear Constraints and Partially Correlated Data," US Army Ballistic  Research 
Laboratory Report BRL R 1668,   July 1973   (AD 766282). 
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Next, we consider relations between the reduced residuals and 

observational errors. Let t be the true value of the model parameter and let 

c- be the true residuals (negative errors) of the observations X. . Then by 

definition 

Fi(Xi + V^) = 0  • (3.9) 

Expanding Eq, (3.9) at the least squares position (X. + c.;t) and only keeping 

the linear terms of the expansion,one obtains 

Fi(Xi + Ci;t) + Fxi'(ci " Ci) + Fti'(t: " ^ = 0  ' (3-10) 

where 

3F (X + c ;t) 

Fti= ^  - (3-11) 

and Fxi is defined by Eq. (3.2). The first term in Eq. (3.10) vanishes 

because c. and t are solutions of the least squares problem (2.1). Therefore, 

one has the following relation between c. and c. (neglecting higher order 

terms of c. - c. and t - t) 

FxiCi= Fxi*i- ^ "^  ' (3-12) 

Defining reduced errors a^ in the same fashion as the reduced residuals by 

* T -1/2  * 
a. = (F R. F ,)    F ,c, (3.13) 
i    xi i xi     xi i 

one obtains from (3.12) the relation 

ai =^1- (FxiRlFxirl/2Ftl-(* "^  • (3-14) 

15 



The second term on the right-hand side of Eq. (3.14) is a slowly varying 

function. It can be interpreted geometrically as a distance between the true 

model surface F.(x;t) = 0 and the least squares model surface F^Cx^) = 0, 

projected onto the space of reduced residuals. Correspondingly, ai are the 

projections of the true residuals c^ onto a space that is orthogonal to the 

least squares model surface F^x^) = 0. Because the last term in Eq. (3.14) 

is a slowly varying function, any scatter of a^^ is directly reflected by the 

scatter of the a.. Particularly, if the true errors ci are normally 

distributed, then so are the projections a^^ and, except for a slowly varying 

bias term, the reduced residuals a^. 

We notice that Eqs. (3.4), (3.13) and (3.14) permit one to express the 

least squares residuals c. explicitly in terms of the real errors ci.  Since 

the c. are known from the adjustment, it would be more useful to express the 

c. in terms of the c.  This amounts to a solution of Eq. (3.12) for the c. 
i i 

instead of c..  However, in order to solve Eq. (3.12) for the ci,   we made use 
of Eq. (3.3), which is satisfied by the residuals ^ but not by the real 

errors c-.   Therefore, one can determine from the residuals c. only the 
1 JL * X 

reduced errors a. and not the complete c^ This is the main reason for the 

introduction of the concept of a reduced residual space. Only in the special 

case where the dimension of the observable X^ is equal to the dimension of the 
constraint function F^ Eq. (3.12) can be solved for either ^ or c^ But 

this is, of course, the case where the reduced residual space has the same 

dimension as the space of the observables, and the only important difference 

between a. and c, is that the components of the former are dimensionless. 

In the vapor pressure problem one obtains from Eq. (3.7) the following 

definition of the reduced residuals a. 

-i ■ [WJlcV )2 + (v)2 ]U2 sgn<F^+ F^ ' <3-15) 
i   X  pi    K Z 

where F . and F™. are partial derivatives of the constraint function (2.8a) or 
pi     li    r 

(2.8b) with respect to p. and Ti.   If only pressure is adjusted, then the 

corresponding definition of the reduced residuals is obtained from Eq. (3.15) 

by setting cT. = 0.  For the vapor pressure problem the reduced residuals are 

scalars.  Therefore, their distribution can be represented by a simple plot of 

cumulative distribution (a probit diagram), which permits a visual comparison 

with a normal distribution.  Other tests and analyses for scalar residual 

distributions are discussed, e.g., in Draper and Smith, 

Norman R.  Draper and Harry Smith,   Applied Regression Analysis,   2nd Edition, 
John Wiley & Sons,   New York,   NY,   HfW. 

16 



IV,  NUMERICAL EXPERIMENTS WITH SIMULATED DATA 

Simulated vapor pressure data were obtained by choosing a set A, B, C of 

AntoLne parameters, calculating P^^) with Eq. (1.1) for s equidistant T± 

values, and subtracting from the pi and Tj random errors cpl and cTi with 

known normal distributions.  The simulated observations thus had the values 

^ = Pi - cpi 

Ti = ¥i - cTi 

l,...,s (4.1) 

Figure 1 shows a typical simulated set of 40 data points with corresponding 

error bars and the fitting curve with confidence limits. The Antoine 

parameters and the standard deviations e^ and eTi of the random errors c^ 

and cTi, respectively, that were used in this example are listed in Table 1. 

Table 1 also contains the parameters of a fitting curve that is shown in 

Figure 1. These retrieved parameters correspond to the optimal value of the 

error parameter 9 . The error parameter 9 was set equal to zero for this 

evaluation of the data. The corresponding standard deviations of pressure and 

temperature observations are also listed in Table 1. The least squares model 

fitting was done by using the utility program COLSAC . The confidence limits 

that are shown in Figure 1 were calculated by solving the Antoine equation 

(1.1) for p and applying the linearized law of variance propagation to the 

function, i.e., by 

= r 3p(T;A,B?C)        f3p(T;A,B (^T ]
U2 (4 2) 

ep   L   9(A,B,C)   ABC l 3(A,B,C) J  J     ' 

where VARr is the variance-covariance matrix of the parameters A, B and C. 

The matrix VABr is defined as follows in terms of the standard errors of A, B 
and C and of the corresponding correlation matrix CABC (all given in Table 1): 

VABC = DABC CABC DABC  ' (4-3) 

where D.™ is a diagonal matrix with the standard errors in the diagonal. The 

distribution of the true reduced errors a. (corresponding to the random errors 

(c *, *Ti)) is illustrated by Figure 2, that shows their cumulative 

distribution function  compared with normal distribution. 

hivars Celmint;,   "A Manual for General  Least Squares Model Fitting, " US Army 
Ballistic  Research  Laboratory  Technical  Report    ARBRL-TR-0216 7,   June 1979 
(AD B040229L). 
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Figure   1.     Simulated  Data  with  Fitted   Curve 

Error  assumptions   for   the   fitting: 

e   ./pR =   1.20 + 0.056   (p.   + cpl)/p1 

'Ti 
0.0  K 

Pressure is shown in torr and temperature is shown in  C, 
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TABLE   I.      PARAMETERS   OF  SIMULATED   DATA   SHOWN   IN   FIGURE   I. 

Input   Antolne   Parameters Retrieved   Antoine   Parameters 

A  -   7.0 

B  =   1900   K 

C   =   130  K 

A =   7.567  ± 0.629 

B =   2406  ±   551   K 

C =   181.39  ± 49.89   K 

Input   Standard   Errors Retrieved   Standard   Errors 

epi/PR =   1.0 + 0.05  pi/pR e  /pR = 1.20 + 0.056 (pi + c  )/pR 

eTi = 0.1 K eT.   = 0  (preset) 

Number of Data Sets Correlation Coefficients 

40 cAB = 0.998 909 7 

cAC = 0.995 506 3 

cBC = 0.998 824 7 

Figure 3 shows in the upper part a plot of the objective function S for 

this data set over the error parameter 6 , assuming 9 = 0. For small 8 the 

error model (2.9) for e . approaches a constant pressure error assumption and 

S approaches the value 0.353. ^ 9, is large> the model approaches a constant 
relative error  and a corresponding S value of 0.316.  The transition between 

0.046 and S = 0.233.  That these limits is through a minimum of S at 
1 

minimum corresponds to the optimal 9 for this data set. The corresponding 

pressure standard error of the model is calculated by Eq. (2.9) and its 

numerical value is given in Table 1. 

The lower part of Figure 1 shows a plot of the iterated parameter 9. that 

is computed by a minimization of S with fixed residuals, as in Step 3 of 

Nielsen's algorithm. The abscissa is again the parameter 9  and the ordinate 

Nielsen's algorithm converges to a point where the ratio is the ratio 0 /9 . 

equals one.  The plot shows that 0]/9] = 1,indeed,is obtained in the vicinity 

of the minimum of S. 

The distributions of the reduced residuals for small 9 , optimal 9 , and 

large 9  are shown in Figures 4, 5 and 6, respectively.   We notice the 

interesting result that the distribution of reduced least squares residuals 
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that corresponds to the optimal 6  (Figure 5) is much closer to a normal 

distribution than the distribution of the true reduced errors, shown In 

Figure 2. 

Results from numerical experiments with sets of simulated data can be 

summarized  as  follows.     The      Nielsen  algorithm  produces  reasonable 
approximations (within 20 percent) of the pressure error factors e  and e 6 0     o I 
if the temperature error is fixed and the number of data points is 50 or 

more.  The algorithm converges in a few steps in these cases if a convergence 

acceleration formula is used.   If both error parameters, 9  and 6 ,  are 

iterated, than one often needs an excessive number of iterations (60 or more), 

even in cases with large numbers of data points.  If the number of data points 

is less than 50, then one can experience large deviations of the retrieved 

optimal  error  parameters  from  the  corresponding  input  values.    The 

minimization of S over 0 for fixed residuals c was done using a simplex 

program.    In some cases,  the program failed to find a minimum of S, 

particularly in the vicinity of 0 = 6.  This is an indication that S has 

little sensitivity to variations of 6 in that region. 

V.  EXAMPLES OF TREATMENTS OF REAL DATA 

A set of vapor pressure data for the chemical compound GD has been 

published by Savage and Fielder. U Figure 7 shows the data and the fitted 

curve for near optimal error parameter Q and a temperature standard error of 

0.1 K. The corresponding reduced residual distribution is shown in Figure 8, 

and the dependence of the objective function S on the parameter 6 is 

illustrated by Figure 9. The slight minimum of S is in this case located 

close to the place where 9,76, = I, so that Nielsen's iteration procedure, 

indeed, produces a near optimal value of 9 . However, if the standard error of 

the temperature measurements is assumed to be larger than in this example, 

then the 5(6 ) curve changes its shape and the transition between both limit 

values (for 9=0 and 9 ■ •) is not through a minimum. For example, if the 

temperature standard error is assumed to be 1.0 K, then the transition is 

through a maximum. (See Figure 10.) In such cases, the optimal value of 9 

is either zero or infinity, whichever produces a smaller limit of S. For the 

compound GD data, the optimum is at infinity. Nielsen's algorithm is not 
applicable in such situations. 

-p——  
Frederick S.  Brundick,   US Army ARRADCOM/Ballistic  Research  Laboratory, 
private aommuniaation,   1981. 

James J. Savage and Donald Fielder, "The Vapor Pressure of (hemiaal Agents 
GD, VX, EA 222Z, EA 334 7, EA 3580, EA 5365, and EA 5533," Edgewood Arsenal 
Technical  Report    EC-TR-760 58,   August 1976   (AD B013164L). 
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COMPOUND GO (SAVAGE AND FIELDER,1976) 
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Figure   7.     Data   and   Fitted   Curve   for   Compound   CD 

Error   assumptions   for   the   fitting: 

epl/pR =   1.68   10~4 + 0.081   (p± + cpi)/pR 

eTi =  0.10 K 

Pressure   is   shown  in  torr  and   temperature   is   shown   in    C. 
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COMPOUND GD (SAVAGE AND FIELDER.1976) 
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Figure  8.     Distribution  of  Reduced  Residuals   for   Compound  GD  and 
Near  Optimal  Error  Parameters 

Error  assumptions   are   the   same  as   for  Figure   7, 
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COMPOUND CD (SAVAGE AND FIELDER,1976) 

•10-2 

32 

31 

CO 30 

o 29 
•—• 
I— 
o 

28 

27 

26 

> 25 
•—■ 

o 
LU 
-> 
DQ 
O 

24 

23 

22 

21 

20 

19 

rr+f-j iii| i iii| i iii| i nil i nil i mi i "i| i iii| i mi i nil i in 

in!   i   mi   i  nil   i   ml   i  ml   i   ml   iSnfiTnl   i   ml  I   ml   I  III!  I  LU 

10 10 -1 10' 10 10' 

1 04      P mi i mi i '"i i iii| i nil i mi i in! i mi ' "i| i iii| i iii| i na 

PRESSURE  ERROR   PARAMETER   THETA-1 

Figure   9.     Objective  Function   S  and   Iterated  Error  Parameter  Ratio 
0/0     for  Compound  GD 

The  error   parameter  6„  was   chosen  such   that 

eTi  =  eoe2 =  0*10  K 
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COMPOUND GO (SAVAGE AND FIELDER.1976) 
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Figure   10.     Objective   Function   S  and   Iterated  Error   Parameter   Ratio 
0/9     for   Compound   GD 

The   error   parameter  9     was   chosen   such   that 

eTi   =  eo92=   1.0  K 
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The numerical results for the compound GD are summarized in Table 2, 

which also contains results reported by Savage and Fielder. The table shows 

that one obtains formally the best results (smallest standard errors and S) if 
a large temperature standard error is assumed. However, the difference 
between results with eT = 1.0 K and e™ = 0.0 K are practically 
insignificant. Therefore, one can simply choose a fixed reasonable value of 
e™ consistent with the accuracy of the experimental procedure without 
sacrificing the quality of the other results. The Antoine constants by Savage 
and Fielder differ by about one standard error from the present result for e™, 
= 0. The difference is probably due to the particular constraint and least 
squares objective function formulation used by Savage and Fielder. That 
formulation is equivalent to a nonlinear variable transformation and, 
consequently, their results are not exactly minimizing the sum of pressure 
residual squares. (Effects of nonlinear variable transformations are 
discussed in Reference 11.) 

A second example of vapor pressure data from Savage and Fielder is 
shown in Figure 11. The corresponding S(6 )-curve for e™ = 0.1 is shown in 
Figure 12. The transition between the limit values of S is in this case 
through a maximum. Consequently, the optimal 6 value is infinity. The 
iterated value 0 is for large 9 equal to a preset maximum which was included 
in the optimization program to avoid overflow. For smaller 6 values one 
obtains other iterates. In this example, the iterated 0 (6 ) was found to be 
quite sensitive to the assumption about the temperature standard error. This 
is illustrated by Figure 13, which shows S(9 ) and 9,(6,) for eT =0. The S 
function is practically the same as in Figure 11, but the iterated 0 (6 ) 
obviously has changed its behavior in the range of 0  between 10  and 10 . 

Numerical results for the compound VX data are given in Table 3. The 
difference between the present results and those of Savage and Fielder again 
is about one standard error. This agreement is remarkable, because Savage and 
Fielder used additional data for their analysis covering an almost three times 
larger temperature range than available for the present analysis. The 
predicted boiling temperature is in the present analysis about 24 K lower than 
predicted by Savage and Fielder. This difference is less than the estimated 
standard error of our prediction; that is, the difference is compatible with 
the accuracy of the observations. The relatively large size of the estimated 
standard error is a consequence of the large extrapolation from 100oC to 2740C 
(5 torr to 760 torr). Savage and Fielder had more data available over a 
larger temperature range and extrapolated only from 2310C to 2980C (140 torr 
to 760 torr). Their predicted boiling temperature is, therefore, probably 
more accurate than ours. However, they do not provide error estimates of 
their results. 

11   • 
A^vars CelminS,   "Least Squares Model Fitting with  Transformations of 
Variables," Journal for Statistiaal  Computation and Simulation.   Vol.   14, 
pp 17-29,   1981. 
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TABLE   2.     ADJUSTMENT   RESULTS   FOR   COMPOUND  GD 

Savage 
and   in 
FielderiU Present Analysis 

eT = 1.0 K eT = 0.1 K eT = 0 eT = 0 

Optimal 
ep/PR 

0.0364p/pR 1.42 10"4+0.0789p/pR 1.38 10"4+0.0794p/pR -p/pR 

A 8.089 + 0.319 7.837 + 0.333 7.855 + 0.333 7.4709 

B (K) 2222 + 173 2100 + 174 2099 + 174 1903.1 

C (K) 236.2 + 10.3 229.0 + 10.6 229.0 + 10.6 216.87 

CAB 0.998 7996 0.998 8284 0.998 8313   

CAC 0.994 8105 0.995 3708 0.995 3934   

CBC 0.998 5390 0.998 7951 0.998 8036   

S 0.1775 0.1920 0.1923   

Boiling 
Temp. 
in 0C 

190.41 + 3.28 192.94 + 3.90 192.93 + 3.92 198 

Ihe SAD, ci\n oind Ogfj are correlation eoeffieiente between the Antoine 
constants A, B, and C. The hailing temperature is quoted for 101.2 kPa (760 
torr) pressure. The temperature range of observations is between 243.15 and 
463.15 K  (-30  and 190oC). 
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COMPOUND   VX    (SAVAGE   AND  FIELDER.1976) 
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Figure 11.  Data and Fitted Curve for Compound VX 

Error assumptions for the fitting: 

epi/PR = 0.0025 (P±+Cv.)/PR 

'Ti = 0.10 K 

Pressure is shown in torr and temperature is shown in C. 

32 



COMPOUND VX (SAVAGE AND FIELDER.1976) 
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Figure   12.     Objective   Function   S  and   Iterated  Error  Parameter 
Ratio G   /9     for  Compound  VX 

The  error   parameter 9„   is   chosen   such   that 

eTi  =  eoG2 =  0'10  K 
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COMPOUND VX (SAVAGE AND FIELDER.1976) 
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Figure 13.  Objective Function S and Iterated Error Parameter 
Ratio S./S. for Compound VX 

The temperature standard error is assumed to be zero. 
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TABLE 3.  ADJUSTMENT RESULTS FOR COMPOUND VX 

Present Analysis 

Savage 
and 
Fielder10 

eT - 0.1 K eT = 0 eT= 0 

Optimal 
eT/pR 

0.0823 p/pR 0.0829 p/pR - P/PR 

A 8.710 ± 1.793 8.708 i 1.793 7.28L0 

B (K) 2852 ± 994 2851 ± 993 207 2.1 

C (K) 215.4 ± 48.1 215.4 ± 48.0 172.54 

CAB 0.999 380 8 0.999 381 6   

CAC 0.997 526 4 0.997 530 5   

CBC 0.999 375 2 0.999 376 4   

S 0.1616 0.1620   

Boiling 
Temp. 
(0c) 

273.9 ± 28.2 273.9 ± 28.2 298 

The S/tn, OAQ ave correlation coefficients between the Antoine constants 
A, B and C. The boiling temperature is quoted for 101.3 kPa (760 torv) 
pressure. The temperature range of observations was between 303.15 and 
373.35 K (30 and 100 .2°C) for the present analysis and between 303.15 and 
504.15 K  (30  and P.310C)  for the Savage and Fielder10 analysis. 

As a last example, we show the results of the analysis of vapor 

pressure data for 1-Tetradecanol. The data are taken from Kemme and Kreps 

and shown in Figure 14. The corresponding objective function S(e ) and 

iterate 0 (6 ) are shown in Figure 15. The erratic behavior of 0 (0 ) in 

Figure 15 is possibly due to a failure of the simplex algorithm to locate 

the proper minimum, indicating that the problem is rather delicate 

numerically. The detailed behavior of S(9 ) and 0 (6 ) is very sensitive to 

assumptions about the accuracy of temperature measurements, as illustrated 

by the different curves in Figure 15 and 16, respectively. However, in both 

analyzed cases, i.e., for temperature standard error 0.1 K and zero, the 

optimal value of the error parameter 0 is infinity. The numerical results 

for the 1-Tetradecanol data are summarized in Table 4. The present results 

closely agree with those of Penski and Latour.  The differences are likely 
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1-TETRADECAHOL    (KEMME   AND   KREPS.    1969) 
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Figure   14.     Data  and  Fitted   Curve   for   1-Tetradecanol 

Error  assumptions   for   the   fitting  are 

epl/pR =  0.0294   (p.   + cpi)/PR 

eTi =   0.1  K 

Pressure   is   shown  in  torr  and   temperature   is   shown  in    C. 
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1-TETRADECAN0L (KEMME AND KREPS. 1969) 
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Figure 15.  Objective Function S and Iterated Error Parameter 
Ratio 0,/Q-. for 1-Tetradecanol 

The error parameter 8  Is chosen such that 

e^. = e 0O = 0.10 K Ti   o 2 
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1-TETRADECANOL (KEMME AND KREPS. 1969) 
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Figure   16.     Objective   Function   S  and   Iterated  Error  Parameter 
Ratio  Qj/Q,   for   1-Tetradecanol 

The   temperature   standard   error   is   assumed   to   be   zero, 
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TABLE   4.     ADJUSTMENT RESULTS   FOR   1   -   TETRADECANOL 

Kemme Penski 
and and 

Present  Analysis Kreps Latour 

eT = 0.1 K eT = 0 

Optimal 

VPR 0.0294 p/pR 0.0294 p/pR 

A 6.2284 ± 0.1846 6.2251 ± 0.1851 

B (K) 1250.2 ± 106.3 1248.2 it 106.7 

C (K) 76.23 ± 12.02 76.01 ± 12.06 

CAB 0.997 527 0 0.997 525 0 

CAC 0.991 019 0 0.991 025 3 

CBC 0.997 877 0 0.997 882 1 

S 0.2974 0.2973 

Boiling 
Temp. 
(0C) 

297.23 ± 1.07 297.24 ± 1.08 

6™ =   0 e™, =   0 

- p/pR - P/PR 

6.4840 6.21962 

1412.907 1244.90 

95.368 75.600 

297.258 

The 0,0, OAQ and cBC ave correlation eoefficients between ike Antoine 
parameters A, B, and C. The boiling temperature is quoted for 101.3 kPa (760 
torr) pressure. The temperature range of observations is between 425.15 and 
569.15 K   (152 and 296 0C). 
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due to the effect of nonlinear data transformation mentioned above. This 
effect is smaller than in the case of compound GD because the temperature 

range of the observations is smaller. The difference between the present 

results and those of Kemme and Kreps is between one and two standard errors 

of the Antoine parameters. It is not clear how Kemme and Kreps obtained the 

Antoine parameters, but their values are between the values corresponding to 

e ~ p and constant e . We obtained almost the same Antoine parameters as 
Kemme and Kreps if we assumed for the pressure standard errors the formula 

epi/pR = 0-139 + 0-0139 (Pi + Cpi)/PR 

and eT. = 0.  The corresponding value of S is 0.4663, indicating that this 

choice of error models is not optimal. 

VI.  CONCLUSIONS 

A posteriori estimation of measurement accuracy is usually based on a 

postulated mathematical model of the observed event and an analysis of the 

corresponding residuals. In addition, one generally assumes that the 

dimension of the model equation is equal to the dimension of the 

observables. With these assumptions one can handle, for instance, curve or 

surface fitting with only one variable subject to errors and repeated 

measurements with arbitrary dimensions. In general, however, the dimension 

of the model equation can be less than the dimension of the observations, 

for instance, if a curve or surface is fitted to observations with errors in 

more than one component. The usual techniques of residual analysis cannot 

be directly applied to such cases because the model equations effectively 

reduce the dimensionality of the residuals by generating correlations 

between the components of the residuals. In order to treat such cases, we 

introduced a new concept of reduced residuals. These residuals have the 

proper dimensionality and can be analyzed by available methods. 

Particularly, in the case of vapor pressure measurements (planar curve 

fitting with both components subject to error) the reduced residuals are 

one-dimensional and can be analyzed by well-known methods that have been 

developed for scalar residuals. 

In the particular error estimation technique considered here, one 

determines the residuals by least squares model fitting and postulates as 

optimal a close to normal distribution of the reduced residuals. As a 

measure for the normality of the distribution one choses a negative entropy 

function S, as suggested in the literature, whereby the distribution is 

considered optimal if S is a minimum.  The technique consists of a 
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systematic variation of the measurement error estimates until a minimum of S 

is obtained. Our numerical experiments with vapor pressure data have shown 

that this procedure, indeed, produces reduced residuals that have a close to 

normal distribution. We were also able to retrieve by this procedure 

approximate standard errors from simulated measurements with known normal 

error distributions. Reasonable accuracy of the retrieved errors was obtained 
with 50 or more observation sets per fitted curve. However, an automatic 

determination of measurement standard errors (as suggested in the literature) 

is not generally possible. We suggest, instead, an interactive direct search 

for the minimum of S. 

In summary, a combination of the new concept of reduced residuals and Che 

use of an objective function S allows one to estimate a posteriori the 

standard errors of pressure as well as temperature measurements. The 

technique is applicable to general model fitting situations, including cases 

with arbitrary dimensions. The particular choice of the entropy function S as 

a measure for the goodness of the distribution of the reduced residuals is 

arbitrary and other objective functions also can be used in the described 

process. We have not tried to determine whether the entropy function is the 

best choice but it has produced reasonable results in our examples. 
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